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Abstract. Efforts to unify group-theoretically the standard-model gauge interactions with the generation
structure of fermions and their mirror partners should be accompanied by the unification of the corre-
sponding gauge couplings. In this paper, the possibility of such a unification is studied, and conclusions on
possible symmetry-breaking channels and scales as well as on the fermion content of the theory are drawn.
The breaking of some of the symmetries allows various Majorana masses for neutrinos and their mirror
partners, so these are studied next. Implications for neutrino mixings and mass hierarchies in connection
with recent experimental results, as well as for electroweak precision tests, are then discussed.

1 Introduction

The quantum numbers of the known fermions under the
standard-model gauge structure allow their partial classifi-
cation under the fundamental representations of the corre-
sponding symmetry groups. This motivates efforts to com-
plete this classification by studying unifying symmetry
groups large enough to accommodate all the fundamental-
particle generations which have been observed so far.
Apart from the purely theoretical interest in such a pos-
sibility, quests for such a unification usually lead to pre-
dictions of the existence of new particles, such as extra
fermions and gauge bosons [1–3]. In particular, the new
fermions are usually referred to as the “mirror partners”
of the standard-model fermions.

Since there are currently several theoretical and possi-
bly also some experimental indications hinting at the ex-
istence of physics beyond the standard model at scales
on the order of 1 TeV [1], it is worthwhile to investi-
gate whether extensions of particle theories in a direction
compatible with generation unification could be related
to these indirect indications at TeV-energy scales. Fur-
thermore, in view of the fact that accelerators designed
to operate in the next decade plan to cover such high en-
ergies, it is quite important to investigate their discovery
potential by producing directly the particles predicted by
the aforementioned extensions.

Before embarking on such a detailed production-and-
decay study, however, one should first check the internal
consistency of the proposed theories and their compati-
bility with current experimental constraints. A first effort
to reproduce the observed charged-fermion mass hierar-
chy, the quark-mixing matrix elements and the weak scale
while staying in agreement with the electroweak precision
data within such a framework was recently presented [1].
The purpose of the present work is to tackle some related,
equally important open issues.

One of these issues involves the calculation of the evo-
lution of the gauge couplings to very high energies, to
determine if there is a sequence of symmetry-breakings
consistent with the unification picture which motivated
the proposed extension in the first place. In all cases dis-
cussed, the symmetries in question are taken to break
spontaneously, and getting into the details of the break-
ing mechanism, e.g., its being of dynamical or fundamen-
tal nature, or the transformation properties of its nonzero
vacuum expectation value, is avoided, because this usually
involves a high degree of arbitrariness and speculation in
an area of no phenomenological input.

Since the energy scales of these breakings could be as-
sociated with the lightness of the standard-model neutri-
nos via the seesaw mechanism, the question of neutrino
masses and mixings left open in [1] has to be studied next.
This also allows the calculation of novel “oblique” contri-
butions to the electroweak parameters that are due to the
possible Majorana nature of the mirror neutrinos. An ef-
fort to address these different but closely related issues
follows next.

2 Coupling unification

2.1 Preliminary considerations

The starting point of the discussion could be either of
the unification gauge groups E81 × E82 or SO(16)1 ×
SO(16)2 without change in the final results, with gauge
couplings g1 and g2 corresponding to the groups with sub-
scripts 1 and 2 respectively. These symmetries are taken
to break at the unification scale ΛGUT down to SO(10)1 ×
SU(4)1G × SO(10)2 × SU(4)2G. The fermions and mirror
fermions of interest transform under the above groups as
(16, 4̄, 1, 1) and (1, 1, 1̄6, 4) respectively.
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It is imagined next that around the same unification
scale, SO(10)1 ×SO(10)2 breaks to its diagonal subgroup
SO(10)D, which has accordingly a gauge coupling at that
scale equal to

g =
g1g2√
g2
1 + g2

2

. (1)

This in turn is taken to break again at ΛGUT into its
maximal subgroup SU(4)PS ×SU(2)L ×SU(2)R. In addi-
tion, SU(4)1G × SU(4)2G could be taken to break down
at the same scale to either of the three groups SU(3)2G,
SU(3)2G ×U(1)G, or SU(4)2G. Under the resulting group
SU(4)PS ×SU(2)L ×SU(2)R ×SU(3)2G, for instance, the
standard model-type fermions transform into four copies
(“generations”) of (4, 2, 1, 1) and (4̄, 1, 2, 1), and the
mirror fermions to (4, 1, 2, 3)+(4, 1, 2, 1) and (4̄, 2, 1,
3) + (4̄, 2, 1, 1). The other two possibilities will be dis-
cussed in Sect. 2.4. In all these cases, it is assumed that
the fourth-generation standard model-type fermions pair
up with their mirror partners, acquiring gauge-invariant
masses on the order of the SU(4)2G-breaking scale. (This
is ΛGUT for the first two cases and about 1 TeV for the
third case, as will be seen in Sect. 2.4.)

One first notes that the only way to unify the genera-
tion-group coupling with the other gauge couplings is to
satisfy the relation g1 � g2 at ΛGUT, because then the
common unification coupling is g ≈ g2 according to (1).
Therefore, the generation group SU(4)1G, which is taken
to break completely at ΛGUT, is strongly coupled at that
scale. The situation with generation group SU(3)2G with
coupling g2 is first investigated. The basis of the analy-
sis of the gauge-coupling renormalization that follows is
more of a qualitative nature and limited to the one-loop β
function, because of the many uncertainties of the dynam-
ics influencing the running of these couplings. These are
mainly due not only to our ignorance of the exact masses
of the mirror fermions and of the type of new physics
needed to break the gauge groups involved in this pic-
ture, which could be Higgs particles in various presently
unpredictable representations, but also to the possible ex-
istence of supersymmetric partners of the standard-model
fermions and to threshold effects near the unification scale.

These uncertainties lead one to take all the mirror
fermions to have the same mass ΛM at around 1 TeV for
simplicity, since the coupling unification is found to be
quite insensitive to this scale anyway. Below ΛM, the cou-
plings evolve as in the standard model. Above that scale,
one has to take the mirror fermions into account. It is then
assumed that there exists a “desert” between ΛM and the
Pati–Salam scale ΛPS where SU(4)PS is broken, with no
new dynamics or particles able to influence the evolution
of the gauge couplings with energy.

The β function describing the evolution of the gauge
coupling g of an SU(N) group with Nf fermion N -plets
with respect to momentum p is given by

β ≡ dg
d ln (p/p0)

= − g3

48π2 (11N − 2Nf + r), (2)

where r stands for higher-than-one loop corrections, and
p0 is some reference scale. If the same fermions transform

also under the fundamental representation of another uni-
tary gauge group SU(N ′) with coupling g′ much larger
than g, the quantity r at two loops is approximately given
by [4]

r =
g′ 2(N ′ 2 − 1)

32π2 . (3)

Therefore, when the SU(3)2G interactions become
strong at around 2 TeV and break SU(2)L × U(1)Y dy-
namically by an effective Higgs mechanism induced by
fermion condensates [1], the corresponding fine-structure
constant is αG ≈ 1. One therefore gets r ≈ 0.3, which is
still much smaller than the one-loop contribution to the
other couplings, even for the smaller groups considered,
e.g., SU(2)L or U(1)Y (the influence of the other cou-
plings to each other is of course even more negligible due
to their smallness). In addition, since SU(3)2G is taken to
break just after it becomes strong [1]; it has a rather lim-
ited energy region where it can influence substantially the
β functions of interest, so large deviations from the one-
loop renormalization of the rest of the gauge couplings are
not expected. This issue is investigated further by present-
ing a particular example in Sect. 2.3.

Moreover, a fundamental Higgs mechanism for break-
ing SU(3)2G is avoided by the evocation of the mechanism
conjectured in the appendix of [1]. In any case, a mini-
mal fundamental Higgs mechanism breaking the genera-
tion symmetry, apart from all the naturalness problems it
carries with it, would make the corresponding gauge cou-
pling run slightly slower. The generation-coupling unifica-
tion with the rest of the gauge couplings at ΛGUT would
then still be achievable by the slight lowering of the max-
imal value this coupling reaches before SU(3)2G breaks
and/or the lowering of the mirror-mass scale ΛM. An ef-
fort to estimate the energy scales entering this problem
without fundamental scalars is presented in the next sub-
section.

However simple, the approach adopted allows us to
draw general conclusions, that do not depend on partic-
ular details, about the way the unification groups break
down to the standard-model gauge structure. It must be
stressed, nevertheless, that the class of symmetry-breaking
channels of interest here has an additional degree of free-
dom compared to the usual and the supersymmetric uni-
fications: the Pati–Salam symmetry-breaking scale ΛPS.
This can be in most cases slightly adjusted to allow unifi-
cation of couplings even after the correct inclusion of these
corrections, unless one introduces unnaturally large Higgs
sectors to break the gauge symmetries. The results that
follow should therefore be seen not as exact predictions,
but rather as order-of-magnitude estimates.

2.2 Calculation of ΛGUT and proton lifetime

The analysis presented here is based on different alter-
native breakings of the gauge symmetry SU(4)PS, since a
priori there is no obvious reason to expect a specific break-
ing channel. The subsequent analysis will show that only
one alternative seems to be viable if one takes proton–
lifetime bounds and the order of magnitude of the weak



G. Triantaphyllou: Neutrinos, their partners, and unification 705

scale into consideration. It is particularly interesting, there-
fore, to note that under certain assumptions, current phe-
nomenological input is able to constrain the number of
different group-breaking channels, even when these appear
at scales much higher than the ones directly accessible at
present.

In particular, the Pati–Salam group is taken to break
at the scale ΛPS either along the channel

SU(4)PS × SU(2)R −→ SU(3)C × U(1)Y, (4)

or along the channel

SU(4)PS × U(1)R −→ SU(3)C × U(1)Y (5)

if the breaking SU(2)R −→ U(1)R has already occurred
at ΛGUT. A third possibility is also examined, namely one
of a Pati–Salam symmetry breaking such as

SU(4)PS −→ SU(3)C × U(1)B−L (6)

at ΛGUT, which is followed by the breaking of SU(2)R ×
U(1)B−L −→ U(1)Y at scale ΛR. In all these alternative
scenarios, the Pati–Salam 4-plets are each broken into a
QCD triplet and a lepton, while simultaneously giving rise
to a “predecessor” of the electromagnetic charge.

It is also noted that, at a first approximation, below
the mirror-mass threshold scale ΛM the couplings of all
the nonabelian groups, except for the generation group
are taken to evolve with Nf = 6 as in the standard model,
and to be above ΛM with Nf = 12, the doubling being
caused by the existence of mirror fermions, which leads
to an abrupt change in slope to the running of the cou-
plings at that scale. The eventual top-quark decoupling, as
well as the mixing between ordinary and mirror fermions,
which apart from the top quark is quite small, is thus
also neglected. The SU(3)2G coupling evolves at all scales
with Nf = 8. These Nf values are the same for all three
Pati–Salam- breaking channels considered.

It is more convenient to work in the following with
the inverse structure constants α−1 = 4π/g2, since their
evolution is linear with ln (p/p0). The value of the hyper-
charge coupling αY(ΛPS) in the first two cases is computed
via the relation

α−1
Y = (3α−1

R + 2α−1
PS)/5 (7)

which is evaluated at the Pati–Salam scale ΛPS, where
αR is the coupling corresponding to SU(2)R or U(1)R,
respectively. In the third case, the hypercharge coupling
is given by the relation

α−1
Y (ΛR) = (3α−1

R (ΛR) + 2α−1
B−L(ΛR))/5. (8)

Furthermore, the first and third cases are based on the
working assumption of unbroken discrete left–right sym-
metry above the scale where SU(2)R is broken, i.e., αR =
αL. As was said in the introduction, a discussion on the
possible breaking mechanisms of these symmetries is here
avoided, since the purpose of the analysis is to allow gen-
eral qualitative conclusions to be drawn.
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Fig. 1. The running of the inverse fine-structure constants
α−1

Y,L,C,G and later α−1
R,PS, corresponding to the breaking chan-

nel SU(4)PS × SU(2)R −→ SU(3)C × U(1)Y. The vertical
lines, starting from small energies, correspond to the scales
ΛM, ΛPS, and ΛGUT. The relevant scales are found to be
ΛM = 102.75 GeV, ΛPS = 1013.65 GeV, and ΛGUT = 1015.5 GeV

The starting point of the calculation is based on the ap-
proximate experimental values for these quantities listed
below [5]

α−1
Y (MZ) ∼ 59.2,

α−1
L (MZ) ∼ 29.6,

α−1
C (MZ) ∼ 8.4. (9)

Moreover, at scale ΛM, the SU(3)2G coupling is taken to
be equal to α2G(ΛM) = 1. This coupling is not plotted
for α2G > 1, because then higher-order corrections to the
renormalization of this coupling become important. This
is expected to have a limited effect on the other couplings,
however, since the generation group breaks at around the
same scale. This issue is examined again later.

The evolution of the inverse fine-structure constants
α−1
i for the various couplings i = Y,L,C,G,PS,R of the

groups U(1)Y, SU(2)L, SU(3)C, SU(3)2G, SU(4)PS, and
SU(2)R corresponding to the three different breaking chan-
nels mentioned above are plotted consecutively in Figs. 1,
2, and 3. The relevant scales for which unification is pos-
sible, along with the value of the unification coupling, are
also given in Table 1.

To begin with, we discuss the first two cases. The en-
ergy scales of interest are found to be ΛM = 102.75 GeV
and ΛPS = 1013.65 GeV in the first case, and ΛM =
102.4 GeV and ΛPS = 1012.5 GeV in the second. The corre-
sponding unification scales and couplings are found to be
ΛGUT = 1015.5 GeV and αGUT = 0.036 in the first case,
and ΛGUT = 1014.9 GeV and αGUT = 0.037 in the sec-
ond. One can see at the scale ΛPS in Figs. 1 and 2 the
characteristic change in slope of the Pati–Salam coupling
when the group SU(4)PS breaks down to SU(3)C; this is
due to the different quadratic Casimirs of their adjoint
representations as well as the starting of the hypercharge-
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Table 1. The energy scales required to achieve unification assuming three different
symmetry-breaking channels, and the corresponding value of the unification coupling.
The second channel is disfavored because of the low unification scale, and the third
channel is also disfavored because of the large mirror-fermion masses implied by ΛM

Symmetry-breaking sequence Energy scales (GeV)

assuming an SU(3)2G generation group ΛM ΛR ΛPS ΛGUT αGUT

SU(4)PS × SU(2)R → SU(3)C × U(1)Y 102.75 ΛPS 1013.65 1015.5 0.036

SU(4)PS × U(1)R → SU(3)C × U(1)Y 102.4 ΛPS 1012.5 1014.9 0.037

SU(4)PS → SU(3)C × U(1)B−L 104 1010.05 ΛGUT 1017.3 0.034
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Fig. 2. The running of the inverse fine-structure constants
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Y,L,C,G and later α−1
R,PS, corresponding to the breaking chan-

nel SU(2)R −→ U(1)R at ΛGUT and SU(4)PS × U(1)R −→
SU(3)C × U(1)Y at ΛPS. The scales are ΛM = 102.4 GeV,
ΛPS = 1012.5 GeV, and ΛGUT = 1014.9 GeV
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Fig. 3. The running of the inverse fine-structure constants
α−1

Y,L,C,G and later α−1
B−L,R, assuming that there is a symmetry-

breaking channel such as SU(4)PS −→ SU(3)C × U(1)B−L

at ΛGUT = 1017.3 GeV and SU(2)R × U(1)B−L −→ U(1)Y
at ΛR = 1010.05 GeV. The vertical lines, starting from small
energies, correspond here to the scales ΛM, ΛR, and ΛGUT.
The mirror-fermion masses are taken to be ΛM = 104 GeV so
that the generation coupling can meet the rest of the gauge
couplings

coupling running at that scale, since at scales higher than
ΛPS, U(1)Y is embedded in other groups.

The inclusion of a minimal Higgs field able to break
these symmetries spontaneously would, for the same ΛGUT,
slightly shift ΛPS downwards, since it would slow down
somewhat the running of the Pati–Salam coupling. It is
clear from the figures that, with the present fermion con-
tent, the slopes of the gauge couplings do not favor SU(5)
unification. Also, the slope of SU(2)L below ΛM speaks
against the addition of new weak-singlet fermions, as is
usually done in universal seesaw models [6], if one seeks
coupling unification.

The third alternative breaking sequence is, as has al-
ready been said, to break the Pati–Salam group at a uni-
fication group such as SU(4)PS −→ SU(3)C × U(1)B−L,
and have later the breaking SU(2)R×U(1)R −→ U(1)Y at
scale ΛR. This possibility is drawn in Fig. 3. The relevant
scales are found to be ΛM = 104 GeV, ΛR = 1010.05 GeV
and ΛGUT = 1017.3 GeV. The scale ΛR with the present
fermion content is quite large (cf. solutions with alterna-
tive fermion contents, for example [7]), supporting a see-
saw mechanism for the neutrino masses. The unification
scale is in this case quite large, a result reminiscent of [8],
and the common coupling at that scale is αGUT = 0.034.
The main reason for the largeness of ΛM is the effort to
unify the generation-group gauge coupling with the other
couplings.

If this unification condition is relaxed in the same way
it is relaxed in connection with an SU(4)2G generation
group that is discussed in the next subsection, the rest of
the couplings can be unified with a smaller ΛM and this
channel is still viable. Nonetheless, in the present case, the
largeness of ΛM used would correspond to an unaccept-
ably large weak scale. The fact that SU(2)R breaks far
away from ΛGUT would also render effects coming from
the mechanism to which its breaking is due (and which
are here neglected, like the existence of scalar particles)
more important. Such effects, however, are not expected
to alleviate the problem of the large scale ΛM. We can
therefore conclude here that the third breaking channel
is improbable, unless generation-coupling unification with
the rest of the couplings is abandoned. Another way to
keep ΛM small would be of course to add a large Higgs
sector transforming nontrivially under SU(3)2G, but this
alternative is not investigated, since it is foreign to the
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Fig. 4. The running of the inverse fine-structure constants
α−1

Y,L,C,G and later α−1
R,PS, corresponding to the breaking chan-

nel SU(4)PS ×SU(2)R −→ SU(3)C ×U(1)Y, to simulate a pos-
sible large influence of the strong generation group SU(3)2G.
It is found that in order to achieve unification, one needs
ΛG = 103 GeV, ΛM = 103.3 GeV, ΛPS = 1013.65 GeV, and
ΛGUT = 1015.5 GeV

present conceptual framework and would raise naturalness
problems.

Gauge-coupling unification in connection with bounds
on the proton lifetime is discussed next, since the breaking
of SO(10)D at ΛGUT can induce proton decay via effective
four-fermion operators. This issue could actually help us
decide between the first two breaking channels proposed.
From the proton-lifetime experimental constraint [5]

τ(p → e+π0) > 5.5 × 1032 yr (10)

and the theoretical order-of-magnitude estimate

τ−1 ≈ α2
GUT

m5
p

Λ4
GUT

, (11)

one gets the inequality

αGUT < 0.074
(
ΛGUT

1015.5

)2

. (12)

This proton-lifetime bound makes clear that the sec-
ond breaking channel possibility is disfavored because of a
small unification scale. Nevertheless, it cannot be at this
point definitely excluded, because there is a limited level of
accuracy of the current rather qualitative analysis. Note
that this result is reminiscent of the result of [8] in an
analysis with the same breaking sequence in a left–right-
symmetric context but without mirror fermions. One is
consequently left with the first alternative as the one cor-
responding to the most probable symmetry-breaking se-
quence.

2.3 The effect of strong dynamics

Strong dynamics can alter the results quoted above, since
higher-order corrections to the various β functions due to

the strong SU(3)2G interactions could become important
if the quantity r introduced before is not negligible. How-
ever, as is also noted in [9], the fermion content of the
theory implies that this effect, however large, would be
uniform for all standard-model couplings, as is shown in
Fig. 4 for an exaggerated effect corresponding to r = 40.
From (3), this would correspond to a highly nonpertur-
bative generation coupling αG ≈ 126 (this number is of
course purely indicative, since the perturbative β func-
tion has no meaning in this regime), something which has
the same influence on each of the other relatively weak
SU(N) couplings as the introduction of 20 new fermion
N -plets.

Such strong dynamics can shift the unification cou-
pling αGUT to larger values, but cannot shift the unifica-
tion scale. In reality, the coupling-evolution curves shown
should be smooth, without angles, but r is here taken to
become suddenly important for illustration purposes, in
a perhaps overambitious effort to simulate the relevant
effect. There is no guarantee, of course, that the nonper-
turbative effects of SU(3)2G can be limited even by such
large r values, but to maintain the conclusions presented
in this work, it is assumed that they are.

The analysis of this alternative leads one to split the
scale where the mirror fermions decouple ΛM from the
scale ΛG where the generation group becomes strong, and
to consider, for instance, the most probable breaking chan-
nel corresponding to Fig. 1. An effort is therefore made to
“parametrize” by means of the quantity r our ignorance
of the strong dynamics and the effects they have on the
other couplings in the energy region between the scales
ΛG and ΛM. The unification and Pati–Salam scale remain
the same as in Fig. 1, but the scale ΛM has to be raised
to 103.3 GeV, and one has to have a further a new scale
ΛG = 103 GeV in order to achieve unification. The strong
coupling tends to make the other couplings slightly larger
at ΛGUT, i.e., one gets αGUT = 0.037. If these effects are
really large, difficulties with the reproduction of the weak
scale could potentially arise from the heaviness of the mir-
ror fermions.

2.4 Mirror generation groups other than SU(3)2G

The issue of the generation groups comes next. Even if
there is an abelian generation group U(1)G surviving down
to TeV scales along with SU(3)2G, unification requires
that its coupling be negligibly small at low energies, so
its running is neglected and its evolution with energy not
plotted. Note, however, that if one wants the seesaw mech-
anism to work for the standard-model neutrinos, as will
be seen in the next section, this symmetry would have to
be broken at very large energy scales to allow for ultra-
light neutrinos. In the first case considered, for instance,
one could think of a breaking channel involving U(1)G, like
SU(4)PS×SU(2)R×U(1)G −→ SU(3)C×U(1)Y×U(1)G′ ,
with the standard-model neutrinos being U(1)G′ -neutral.
This does not change the previous results and conclusions,
but it could alter the values of the abelian generation-
group charges in [1].
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Fig. 5. The running of the inverse fine-structure constants
α−1

Y,L,C,G and later α−1
R,PS, corresponding to the breaking chan-

nel SU(4)PS × SU(2)R −→ SU(3)C × U(1)Y. The generation
group SU(4)2G is here taken to be unbroken until TeV scales,
and unification of its coupling with the rest of the gauge cou-
plings is here abandoned. All couplings apart from the genera-
tion coupling are larger at the unification scale due to the ex-
istence of two additional generations of fermions. The relevant
scales are found to be, as in Fig. 1, equal to ΛM = 102.75 GeV,
ΛPS = 1013.65 GeV, and ΛGUT = 1015.5 GeV

One could also give up unification of the generation-
group couplings with the other couplings. This would
mean either letting the relation between g1 and g2 free, or
considering SU(4)2G instead of SU(3)2G unbroken down
to low-energy scales. The latter would correspond to hav-
ing also a fourth fermion generation paired up with its
mirror partner at scales of the order of 1 TeV; this would
make Nf = 16 for the standard-model groups instead of
Nf = 12 used in all previous cases. The generation-group
β function would remain with Nf = 8 as before. The cor-
responding running of the couplings is plotted in Fig. 5.
The scales ΛM, ΛPS, and ΛGUT remain the same as in the
more favored case of Fig. 1.

This scenario has the advantage that it can generate
lepton masses through a strong U(1)G coupling after its
breaking at around 1 TeV [1]. It suffers, however, from
the same problem as the one encountered in [2], since in
both cases the generation coupling is running too fast and
complete unification is lost. One could achieve unification
only by pushing the scale ΛM to very high values and
thus paying the unacceptable price of a weak scale several
orders of magnitude larger than what it should be. More-
over, because of the introduction of additional low-lying
fermions, it pushes the other gauge couplings to larger val-
ues at the unification point, since one finds αGUT = 0.067,
something which could potentially create problems with
proton decay. This is also the reason why no additional
fermion generations or their mirrors should be generally
expected much below the unification scale.

Important conclusions can be therefore drawn here,
namely that for unification of the generation coupling with
the other gauge couplings, one should have a group
SU(3)2G becoming strong at around 1 TeV whose cou-

pling renormalization naturally reproduces the hierarchy
between the QCD and the weak scale, and which argues
against alternative generation groups unbroken to low en-
ergies like SU(4)2G or SU(2)2G for instance. This is, to the
best of our knowledge, the first example of a fully unifi-
able and phenomenologically viable dynamical symmetry-
breaking model.

Note, moreover, that in all cases considered, the Pati–
Salam group has to break at a very high energy to achieve
unification, which is due to the fast running of the Pati–
Salam coupling, making it very difficult to feed down quark
masses to leptons. In order to avoid light fundamental Hig-
gses therefore, the existence of gauge-invariant operators
of the form l̄Rl

M
L q̄

M
R qL which arise nonperturbatively would

have to be postulated as generating lepton masses.

3 Neutrino masses and mixings

3.1 The structure of the mass matrix

Having acquired a general idea on how and at what en-
ergy scales the gauge symmetries break in this model,
we present an investigation of the neutrino mass hierar-
chy and mixing angles next. Since the symmetry-breaking
channels considered involve always the breaking of the
SU(2)R and SU(3)2G symmetries, which protect neutrino
and mirror neutrino Majorana masses respectively, it is
most natural to ask now what happens to their relevant
masses and mixings after these breakings. In light of recent
experimental results on neutrinos [10], such considerations
go beyond a mere academic interest.

Even though the analysis that follows is not exhaustive
and the mass-matrix entries do not stem from a specific
calculational scheme, this example not only demonstrates
explicitly the power that the present framework has to de-
scribe several phenomenological issues without fine-tuning
of parameters, but it also leads to quite useful general con-
clusions about the structure of the mirror-lepton subma-
trices. For simplicity, the lepton mass matrices, as well as
their submatrices ML,mL,M, M̃,mI,mB, defined below,
are taken as symmetric and real, ignoring CP-violating
phases which may arise in the lepton sector.

Recalling the numerical example in [1], for the charged
leptons l, a 6 × 6 mass matrix ML is introduced, having
the form

lL lML

l̄R
l̄MR

(
0 mL

mL ML

)
(13)

with the superscripts M indicating mirror fields and ML,
mL being 3 × 3 matrices in a generation space given by

ML(GeV) =


180 0 0

0 200 0
0 0 200


 ,
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mL(GeV) =


 0.25 0.25 0.1

0.25 3.8 1
0.1 1 17


 . (14)

These produce, after diagonalization, the following lepton
and mirror-lepton mass hierarchy (at 2 TeV and in GeV
units):
Standard-model charged leptons Mirror charged leptons
mτ = 1.45, mµ = 0.07, me = 3 × 10−4 mτM = 201,
mµM = 200, meM = 180.

Recall that the order of magnitude of these masses
has to fulfill the double requirement of escaping direct
detection in current high-energy facilities and reproduc-
ing along with the other mirror fermions the correct weak
scale.

For the neutrinos the situation is more complicated,
since they could be of a Majorana nature. The neutrino
12×12 mass matrix MN is introduced next, and it is taken
to have the following form:

νL νcR νM
L νM,c

R

ν̄cL
ν̄R
ν̄M,c
L
ν̄M
R




0 0 0 mI

0 M mI 0
0 mI M̃ mB

mI 0 mB 0


 , (15)

where the entries shown are 3 × 3 matrices in generation
space. The zero blocks are protected by the SU(2)L sym-
metry. The matrices mB and mI denote Dirac mass matri-
ces having SU(2)L-breaking and SU(2)L-invariant entries,
respectively, and M̃,M are Majorana mass matrices with
SU(2)R ×U(1)G-breaking elements for the mirror and or-
dinary neutrinos, respectively. The structure of these ma-
trices in generation space determines the mass hierarchies
and mixings of the neutrinos.

Since the present model does not predict the existence
of a light sterile neutrino, contrary to other “mirror” mod-
els [11], attention is restricted to current experimental
data regarding solar and atmospheric neutrino anoma-
lies, which imply differences of masses squared ∆m2

ij ≡
m2
i − m2

j , with i, j = 1, 2, 3, and mixing angles θ among
only three mass eigenstates m1,2,3 of standard-model left-
handed neutrinos, if one accepts the view that they are due
to quantum-mechanically coherent oscillations between
different neutrino-flavor eigenstates. Assuming, for in-
stance, that the small-angle MSW solution to the solar-
neutrino deficit involves the left-handed electron and muon
standard-model neutrinos νe and νµ, one gets experimen-
tal bounds which according to [10] are given by

4 × 10−6eV2 <
∼ ∆m2

21
<
∼ 1.2 × 10−5eV2 (16)

with a mixing angle sin θsun ≈ 0.03 − 0.05.
Further information on neutrino masses and mixing

coming from the atmospheric neutrino anomaly, assuming
it involves the left-handed standard-model neutrinos ντ
and νµ, gives the bounds

4 × 10−4eV2 <
∼ ∆m2

31
<
∼ 8 × 10−3eV2 (17)

with a mixing angle sin θatm ≈ 0.49−0.71 associated with
it [10]. It has to be noted that this νµ − ντ mixing is un-
usually large as compared with charged-fermion mixings
observed so far. This experimental input constitutes the
basis which determines the form of the neutrino subma-
trices given below.

3.2 Two numerical examples of mass matrices

The working assumption is made next that the SU(2)L-
breaking mirror-fermion Dirac masses satisfy the inequal-
ities mUM > mνM > mlM for each fermion generation,
where UM stands for an up-type mirror-quark field. This
is done in analogy with the standard model, where each
generation contains quarks that are heavier than the corre-
sponding leptons. Up-type quarks are heavier than down-
type quarks only for the two heavier standard-model gen-
erations, but it is imagined in the present example that
this is a general property for mirror quarks and leptons in
all their generations.

Taking into consideration the charged-fermion mass
matrices [1] and the SU(2)R symmetry-breaking scale, the
phenomenological input given above leads to the following
choice of mass matrices:

mB(GeV) =


250 0 0

0 350 0
0 0 350


 ,

mI(GeV) =


20 1 1

1 50 20
1 20 70


 (18)

and
M̃ = 0, M = 1013 I3 GeV, (19)

with the mB entries being generated as in the matrix ML
by the strong SU(3)2G interaction which breaks SU(2)L×
U(1)Y dynamically [1], and I3 the 3 × 3 identity matrix.
Dirac mirror neutrinos are initially considered, since M̃ =
0. It will become clear in the following that the magnitude
of the mI entries, in conjunction with M , seems to be
crucial for the reproduction of the correct mixings of (16)
and (17). Once the magnitude of the M entries is fixed,
the structure of mI is therefore more or less constrained.

In the next section, Majorana mirror neutrinos are also
studied, which leads to the introduction of M̃ 6= 0, but it
is noted that the Dirac or Majorana nature of the mirror
neutrinos does not influence substantially the masses and
mixings of the ordinary neutrinos for which one has exper-
imental evidence to compare with the relative theoretical
predictions. Therefore, Dirac mirror neutrinos are suitable
for the purposes of this section. The scale of the large Ma-
jorana masses is taken to be close to the scale where the
SU(2)R symmetry is broken. (Gauge invariance dictates,
of course, that this breaking is due to a nonzero vacuum
expectation value of an SU(2)R triplet.) The matrix M is
chosen as diagonal for simplicity, even though in principle
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the large νµ − ντ mixing could originate also from this
matrix.

Moreover, the mirror neutrino matricesmB, M̃ are also
chosen as diagonal for simplicity, since mirror mixing can
be fed down only indirectly to ordinary fermions and can
hardly account for the large observed νµ−ντ neutrino mix-
ing. Therefore, even if mirror-neutrino mixing is present,
lack of relevant experimental evidence would just burden
the numerical example with more parameters, so it is ig-
nored. What is more, large nondiagonal elements in mB
would lead to dangerously light weak-doublet mirror neu-
trinos. One is therefore left to try large nondiagonal ele-
ments for the matrix mI in order to explain at least part
of the large neutrino mixing.

The numerical example above leads after diagonaliza-
tion of the mass matrix to the following neutrino mass
hierarchy (at 2 TeV):

Standard-model (Majorana) neutrinos Mirror (Dirac) neu-
trinos (GeV) mν3L = 0.03 eV, mν2L = 0.002 eV, mν1L =
0.00003 eV mν3M

= 201, mν2M
= 200, mν3R ≈ mν2R ≈

mν1R = 1013 GeV mν1M
= 180.

The mass matrix MN gives also a mixing sin θ for
the solar and atmospheric neutrino problems (which in
our case of course involve only standard-model neutrinos).
equal to 0.04 and 0.53, respectively, which is compatible
with experiment [10].

Whereas the form of mB is consistent with the cor-
responding mirror charged-lepton matrix ML, the matrix
mI is slightly problematic, since it has a gauge-invariant
mass term ν̄µ Lν

M
µ R for the second generations which is

larger than the corresponding c̄Lc
M
R quark-mass term in

[1]. Qualitatively, one would generally expect such terms
involving quarks to be larger than the corresponding lep-
ton ones. Although this is generally expected in analogy
with the standard-model case and possibly based on QCD-
related contributions to particle masses, the lack of a defi-
nite calculational scheme for these gauge-invariant masses
poses limits to such arguments. There are nevertheless sev-
eral solutions to this naturalness issue, and these are pre-
sented below.

One possibility is to consider lighter mirror leptons,
which would then allow for smaller entries in mI. This
by itself would, however, not be enough to remove this
discrepancy without exceeding the lower mass bounds on
direct production of new weak-doublet fermions set by the
LEP experiments. Another solution is to consider heavier
mirror quarks and charged leptons, which would then re-
quire larger entries in the corresponding gauge-invariant
quark-mass submatrices [1]. This solution would also help
indirectly to reduce the problems with the electroweak
precision tests, as is shown in the next section.

A third alternative solution to this naturalness ques-
tion is here investigated, i.e., smaller Majorana masses for
the fields νR. This is not such a severe assumption, since in
nature, one has already examples like the electron, which
has a mass more than five orders of magnitude smaller
than the scale where the symmetry which forbids its mass
breaks. The choice M = 1011I3 GeV is made next, and

mB is kept the same as before, in which case the matrix
mI takes the form

mI(GeV) =


2 1 0

1 17 5
0 5 21


 . (20)

As in the previous case, the closeness of the (2,2) and
(3,3) entries is crucial if one wants to generate large νµ−ντ
mixing without nondiagonal (2,3) and (3,2) entries that
would be inconsistently large in comparison with the cor-
responding entries of the other fermion mass matrices.
Even though nondiagonal entries could also reproduce the
correct neutrino mixing by being smaller than the ones
chosen here, provided the diagonal entries were even closer
to each other, something which would be reminiscent of
the maximally mixed K0 − K̄0 system, such a scenario
would fail to produce the required mass hierarchies. Us-
ing the mass matrix in (20) gives rise to the following
neutrino mass hierarchy (at 2 TeV):
Standard-model (Majorana) neutrinos Mirror (Dirac) neu-
trinos (GeV) mν3L = 0.05 eV, mν2L = 0.002 eV, mν1L =
0.00004 eV mν3M

= 201, mν2M
= 200, mν3R ≈ mν2R ≈

mν1R = 1011 GeV mν1M
= 180 and mixing angles similar

to the ones in the previous case.
Even smaller Majorana masses would potentially lead

to neutrino masses on the order of 1 eV, which could
be of cosmological interest because of hot dark matter.
However, having Majorana neutrino masses even lighter
than two orders of magnitude smaller than the SU(2)R-
breaking scale seems unlikely and such a possibility is not
studied. A similar possibility would be to have a contri-
bution on the order of 1 eV to the Dirac sector of all
standard-model neutrinos due to unspecified effects, but
since the present model cannot calculate or predict such
effects, this issue is also not pursued further.

It is worth noting here that, in order to get the ob-
served fermion mass hierarchies and mixings [1], one is led
to consider gauge-invariant fermion mass terms ψ̄M

L ψR, de-
noted by mI ψ for ψ = t, c,b, s,τ, µ, ντ , νµ, exhibiting the
hierarchy

mI,t

mI,c
,
mI,b

mI,s
� mI,τ

mI,µ
� mI,ντ

mI,νµ

. (21)

It therefore seems that the more gauge interactions a
fermion flavor has, the larger the gauge-invariant mass
splitting between its third- and second-generation repre-
sentatives, even when these gauge interactions are rela-
tively weak as compared to the SU(3)2G one. This could
be an indication of near-critical four-fermion interactions
in the sense explained in [12] and which are contained in
the scenario presented in [1]. The large neutrino mixing
suggested by the superkamiokande data is therefore con-
sistent with the existence of such types of interactions, as
made is clear by the generic pattern noted in (21).

3.3 The mixing parameters

The symmetric charged- and neutral-lepton mass matrices
used above are diagonalized by the 6 × 6 and 12 × 12
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matrices, which we denote by Ki, i = L,N, respectively,
via the relations

Mi = KiJiK
†
i , (22)

where the Ji denote diagonal matrices. The lepton mixing
information is therefore contained in a 6 × 12 matrix U
defined by the relation

Ulj = (K†
L)lm(KN)νmj , (23)

where m summation is implied, with l,m = e, µ, τ, eM, µM,
τM, with νm running only over the SU(2)L-doublet neu-
trino flavors, and j = 1, ..., 12. Note that, following the
convention of [10] and contrary to the neutrino case, we
keep flavor indices for the charged-lepton mass eigenstates
due to the assumed small mixing between them.

It is therefore clear that the three ordinary-neutrino
and three mirror-neutrino flavor eigenstates νl, which are
weak doublets, are given in terms of the twelve neutrino
mass eigenstates νj via the relation νl = Uljνj , with j
summation implied. The first three neutrino mass eigen-
states are light enough to allow their superposition to be
considered as coherent. Furthermore, since the matrix ML
is almost diagonal, KL is close to the unit matrix, and the
form of U is mostly affected by KN.

Experimentally, there is presently information on only
some of the elements of a 3 × 3 submatrix of U involv-
ing standard-model left-handed neutrinos and denoted by
USM
st , with s = e, µ, τ and t = 1, 2, 3. The above mass ma-

trices allow the calculation of USM by means of (22) and
(23), and this is found to be equal (in absolute values) to

|USM| =


 ∼ 1 0.039 0.01

0.04 0.87 0.5
0.008 0.5 0.86


 . (24)

Its form is quasi-symmetric, as is expected from the form
of the mass matrices assumed. This is consistent with the
matrix given in [10] for the small-angle MSW solution to
the solar-neutrino deficit, even though in the present case,
USM is not rigorously unitary because of the existence of
mirror leptons, which slightly mix with the ordinary ones.
Moreover, it is observed that the smallness of the element
USM

e3 justifies in the current example the assumption that
the two oscillations are practically decoupled [10].

Larger nondiagonal entries in the matrix mI can fur-
ther increase the entries (2,3) and (3,2) and the corre-
sponding νµ−ντ mixing. A similar analysis therefore could
also be easily performed for the large mixing-angle MSW
and the vacuum-oscillation solutions for the solar-neutrino
problem, without alteration of the conclusions drawn
above about the possibility of having heavier mirror
fermions than previously imagined for naturalness rea-
sons, since these are based only on the heavier neutrino
mass eigenstates.

4 Mirror neutrinos and the S parameter

The contributions of the mirror fermions to the electro-
weak precision parameters S and T were calculated in [1]

with Dirac mirror neutrinos assumed. Since the generation
symmetries which prohibit mirror Majorana masses are
broken at around 2 TeV, it is natural to consider Dirac-
Majorana mirror neutrinos next. This can be achieved by
introducing a nonzero matrix M̃ with entries near that
scale, for example M̃ = 600I3 GeV. The standard-model
masses and mixings do not change substantially with this
introduction, while the Dirac-Majorana mirror neutrino
mass hierarchy takes now the form (in GeV):
mνM

3R
= 169, mνM

2R
= 162, mνM

1R
= 91

mνM
3L

= 768, mνM
2L

= 761, mνM
1L

= 691.
From the identification ma ≡ mνM

R
and mb ≡ mνM

L

for notational convenience for each of the three mirror-
neutrino generations, in the limit ma,b,l � mZ the oblique
leptonic contribution to the S parameter for each mirror
generation having a charged lepton of mass mL is given
by [13]

S0
L =

1
6π

{c2θ ln (m2
a/m

2
L) + s2θ ln (m2

b/m
2
L) + 3/2 −

s2θc
2
θ[8/3 + f1(ma,mb) − f2(ma,mb) ln (m2

a/m
2
b)]},
(25)

where

f1(ma,mb) =
3mam

3
b + 3m3

amb − 4m2
am

2
b

(m2
a −m2

b)2

f2(ma,mb) =
m6
a − 3m4

am
2
b + 6m3

am
3
b − 3m2

am
4
b +m6

b

(m2
a −m2

b)3
.

(26)

This result is identical to the one given in [14] in this mass
limit only if the quantities cθ and sθ are correctly defined
as

c2θ = 1 − s2θ = mb/(ma +mb). (27)

In the above, corrections due to the fact that one mir-
ror neutrino is not much heavier than the Z boson are
neglected, since the purpose of this example is just to il-
lustrate an effect that depends only on mass ratios and not
on independent masses, and since one has poor knowledge
of the overall mirror-fermion mass normalization anyway.
Note, moreover, that contrary to [13,14], the mirror neu-
trino masses ma,b do not correspond to pure weak eigen-
states, because of mixing with ordinary neutrinos. This
mixing is small, however, because of the relative small-
ness of the elements of mI compared to the mB entries,
and its effects are therefore also neglected.

As regards the ∆ρ parameter, which measures the
isospin-breaking in the new sector, it is shown in [1] that
there exists no problem in rendering it small enough to
fit experiment, even though some fine-tuning might be
needed. Since any leptonic contributions due to Majorana
mirror neutrinos as described in [13,14] can be compen-
sated by a corresponding shift to the up–down mass split-
ting of the mirror fermions, there is no use discussing it
further in the present context when the precise mirror-
fermion mass spectrum remains experimentally unknown.
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The total oblique correction S0 to S in this model,
assuming QCD-like dynamics, is the sum of the contribu-
tions S0

q and S0
l coming from mirror quarks and leptons,

respectively, i.e., [1]

S0 = S0
q + S0

l = 0.9 + 0.3. (28)

For the light mirror charged leptons chosen in the previ-
ous section, the change in S0

l due to the Dirac-Majorana
nature of the mirror neutrinos is marginal, i.e., S0

l = 0.12
instead of S0

l = 0.3 for the case of Dirac mirror neutrinos.
If one chooses heavier charged mirror leptons, the change
in S0

l is larger. For instance, for mlM ≈ 400 GeV one gets
S0
l = −0.12, and for mlM ≈ 600 GeV one gets S0

l = −0.24.
The fact that negative S values are currently favored by
experiment [15] could therefore be an indication that the
mirror leptons are heavier than the ones of about 200 GeV
chosen in [1]. The lightest mirror neutrino cannot be much
lighter than what it is taken as here, because smaller val-
ues for its mass are excluded by present experiments.

After analyzing the above formula for S, we conclude
that contributions to Sl are not very sensitive to mb,
but depend drastically on ma/ml. Heavier mirror leptons
would produce an even smaller S parameter, but assum-
ing that the mirror quarks are at least as heavy as they
would render difficult the correct reproduction of the weak
scale after a certain point. It is nevertheless clear that a
larger ma/ml hierarchy could facilitate the reproduction
of a small or even negative S parameter in accordance
with experiment. This could be achieved now with the as-
sistance of vertex corrections and non-QCD-like dynamics
in these models as described in [1] without very large top-
quark anomalous couplings having to be introduced. Such
a situation would also reduce the fine-tuning needed to
keep the ∆ρ parameter small.

5 Conclusions

Mirror fermions near the weak scale offer rich possibili-
ties for the study of new physics. The absence of direct
experimental evidence on the existence of mirror partners
to the standard-model fermions led to the present quali-
tative study of various unification possibilities and related
neutrino physics, in which there was no a prior knowledge
of the exact mirror mass hierarchies. However, this did not
prevent very useful general conclusions about such types
of models from being drawn. There are two basic results
to be kept in mind. One is that unification of all the gauge
couplings, including the generation-group coupling, is pos-
sible within this group-theoretical context and consistent
not only with the weak scale but also with current bounds
on the proton lifetime. The other result is that neutrino
masses and mixings consistent with the observed solar and
atmospheric neutrino anomalies are naturally achieved.

In particular, it is made clear that with the proposed
fermion content extension, not only is SU(5) unification
is disfavored, but unification with an SU(3)2G generation
group is possible. Within the group-theoretic framework
chosen, this is possible if one takes the gauge coupling (g1)

of one sector to be much larger than the other (g2) at the
unification scale. This unification is a priori not at all ob-
vious, and constitutes a highly nontrivial result within the
context of dynamical symmetry-breaking theories. There
exist nevertheless no direct indications that the scales ΛM
and ΛPS assume indeed the exact values needed for this
to happen, and no guarantee that this coupling crossing is
not just a coincidence with no particular importance for
the embedding of the standard-model gauge structure.

Moreover, the existence of mirror fermions that are
weak singlets is also not favored. This is a clear manifes-
tation of the “sin θW ” problem in [6,16] which does not
appear when weak-doublet mirrors of the type introduced
in [1] are used. Even though these could a priori pose
problems with the S parameter, it was recently shown [1]
that vertex corrections could alleviate these effects. It is
further shown that the most probable symmetry-breaking
channel is the SU(4)PS × SU(2)R −→ SU(3)C × U(1)Y.
This breaking channel corresponds to a unification scale
ΛGUT small enough to suggest that detection of proton
decay could soon be experimentally accessible.

Present bounds on proton decay further indicate that
no more fermion generations are very probable at low
scales, since then, even though unification would still be
possible, the unification coupling would be too large. Fur-
thermore, the different running of the SU(3)C and
SU(3)2G gauge couplings due to the different fermion num-
bers which correspond to them provides a natural and
very interesting explanation of the hierarchy between the
QCD scale and the weak scale, i.e., approximately the
scale where the generation interactions SU(3)2G become
strong.

The unification investigation conducted also makes ap-
parent a problem in this theory having to do with the
generation of lepton masses. In particular, the Pati–Salam
scale ΛPS is found to be too large to allow quark masses
to be fed down to leptons via effective four-fermion op-
erators associated to the SU(4)PS breaking. If one does
not want to use a fundamental Higgs mechanism to break
the generation group at the TeV scale, a solution to this
problem would be a strong U(1)G at the TeV scale [1]. To
avoid a Landau pole to the corresponding gauge coupling,
the group U(1)G has to be embedded soon into a larger
nonabelian group, like SU(4)2G.

However, if one insists on unifying the generation cou-
pling with the rest of the gauge couplings, the solution
above is unfortunately not viable, since as was noted in
Sect. 2.4, the SU(4)2G coupling runs too fast to unify with
the other gauge couplings. The group SU(4)2G therefore
has to be broken at the unification scale, and the U(1)G
coupling at low energies is consequently very weak. A way
out for lepton-mass generation could in principle be the
existence of gauge-invariant operators generated beyond
tree level which feed down quark masses to leptons.

As has already been stressed, in the unification anal-
ysis presented, several effects are neglected. These are re-
lated to (i) unification threshold effects, (ii) the Higgs
content needed to break the SU(4)PS and SU(2)R sym-
metries, (iii) two- and higher-loop contributions to the
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β functions, (iv) the fact that the mirror fermions are
taken to be all degenerate in mass, and (v) the SU(3)2G
becoming strongly coupled at around 1 TeV, something
that could influence the rest of the couplings. It is not ex-
pected, however, that these effects would spoil the quali-
tative results of the analysis above. Unification could still
be achieved if these effects were correctly taken into ac-
count, since one has the freedom to adjust the scales ΛM
and ΛPS without influencing considerably the unification
scale ΛGUT. This is particularly true for the favored possi-
bility presented in Fig. 1, since the proximity of the scales
ΛPS and ΛGUT does not leave room for large adjustments.

One could of course claim that the freedom to adjust
ΛPS to achieve unification makes this exercise easier to
complete and reduces the predictability of the theory by
adding an extra free parameter. On the other hand, the
most favored scenario described connects this scale with
the breaking not only of SU(4)PS, but also of the SU(2)R
symmetry. The examples involving Majorana neutrinos
presented above indicate, however, that this scale is ex-
pected to be several orders of magnitude smaller than the
unification scale. This not only speaks against the idea
that a desert reaches up to ΛGUT, but is also consistent
with the scenario analyzed here.

As has already been noted, the unification considera-
tions above indicate a favored SU(2)R-breaking scale usu-
ally associated with the mass of heavy Majorana neutri-
nos in the context of the seesaw mechanism. This leads to
the study of neutrino masses and mixings, in this frame-
work and in connection with recent experimental results.
It is found that to have the neutrino masses and mix-
ings compatible with experiment and unification, heav-
ier charged mirror fermions than the ones quoted in [1]
might be needed, unless the heavy standard-model Ma-
jorana neutrinos are quite lighter than the scale where
SU(2)R breaks. Heavier mirror fermions imply, further-
more, not only a more difficult detection of their indi-
rect effects, since their mixing with the standard-model
fermions is smaller, but also a smaller need of fine-tuning
of their masses [1]. It is also interesting to show that the
above observation is perfectly consistent with a small S

parameter, which is currently favored by electroweak pre-
cision tests. A small S parameter could furthermore be an
indication that the lightest mirror neutrino, i.e., the field
denoted as νM

1R, is so light that it could lie just beyond the
reach of present high-energy collider experiments.
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